太阳能的工业化利用,必须以大面积采光、大规模聚光为前提。采光设施的建设、运营成本高,占整个建站成本的50%以上,使用寿命短,是导致电站总体效益低的主要原因。这里面包含着几个相互制约的技术因素:
⑴、大面积采光与抗风能力的矛盾;
⑵、大规模精确跟踪与伺服成本的矛盾;
⑶、设备低成本制造与材料成本、工艺成本的矛盾;
⑷、长期在野外风沙环境中运行的维护、镜面保洁等运营成本的问题;
⑸、聚光材料的抗老化问题等等。据各国近十几年的实践证明,现有的“有源驱动式”的跟踪技术,不仅技术复杂、材料成本、工艺成本、运营成本高;而且一般只能在野外环境中有效运行2~3年就要报废或更新1;抗风沙能力差,且不能满足大规模塔式超远程(≥500米)、反射式定焦聚光的精度要求;只适合做小规模实验研究或是家庭使用,是造成太阳能电站“建不起”、“用不住”、“效益低”的根本原因。
由于上述的原因,目前实际上的大部分太阳能电站都是采用不跟踪日照的“固定式”安装的技术方案,如图2:
图2 “固定式”安装的普通光伏太阳能电站
一部分用于研究、示范性的太阳能项目根据对日照采光要求的不同,可分为单轴跟踪和双轴跟踪的两种形式。如图3、4是槽式光热电站的聚光槽和普通光伏电站的极轴式的一维跟踪形式;图5~9是二维跟踪技术的应用实例:
图3 槽式光热电站的聚光槽及集热管照片