光伏发电损失的罪魁祸首——木桶效应

索比光伏网 中字

经常听到光伏部件出现种种创新,比如组件实验室效率24%、量产效率20%,而逆变器转换效率宣称99%。其中组件效率指的是光电转换效率,逆变器转换效率指的是从其直流输入转换为电网交流的工作效率。

大家都知道电站“转换效率”非常关键,因为它直接影响到了发电收益。虽然上面提到的两个核心部件的转换效率已实现了跨越式突破,但还是经常看到光伏电站的统计数据中,从光伏组件直流转换为电网交流的转换效率却低至74~80%。即使逆变器转换效率实际为98%,但是这个差额18~24%去哪里了?

有人可能怀疑是交直流电缆线损、直流汇流箱或交流配电柜损耗所导致,但是这部分损耗一般仅为1~3%左右,还是解释不了这么大的能量损失。其实,站在整体系统的角度考虑,“发电量损失”的根源正是“组件串联的木桶效应所导致的失配损失”,木桶效应是光伏发电损失的罪魁祸首,这也是本文所要讨论的核心问题。

1、光伏组件的伏安特性

当前光伏发电市场的应用主流是晶硅组件,包含多晶和单晶。薄膜电池可弯曲性好、弱光发电能力较强,但相比较之下,晶硅组件性价比、能量密度更高及长期运行稳定性更好。所以,晶硅组件也成为本文的主要讨论对象。晶硅组件核心材料是量大价低的半导体硅,主要由电池片、焊带、背板、边框、及内含旁路二极管的接线盒等构成,如图1所示。

图1 晶硅光伏组件的外形图

光伏组件内部电池片的等效模型如图2所示,其中Rs为组件串联阻抗、Rsh为组件自身阻抗。光伏电池本质上是一个电流源,只是这个电源流被二极管限定电压至0.5~0.7V。由于晶硅组件内部由多个电池片串联而成,因此组件输出电压大约为30~42V。

图2 光伏组件内部电池片的等效模型

基于以上电池片等效模型,可以得到以下光伏电流和电压之间的数学函数关系式。根据高等数学的相关知识,从这个函数关系可以清楚看出,这两者之间是一种非线性关系。

光照强度直接影响组件输出电流,以sunpower黑硅单晶组件为例,如图3所示(https://us.sunpower.com/sites/sunpower/files/media-library/data-sheets/ds-e18-series-225-solar-panel-datasheet.pdf)。光照强度为200w/m2时,组件电流为1.2A;如果光照强度增大至1000w/m2时,组件电流相应增大至6.0A,从而说明组件电流与光照强度成正比,反之亦然。

图3 光伏组件的伏安特性曲线

由图3也可看到一个有趣并且重要的现象,即在标准测试条件(STC)下,每种光照条件的伏安特性曲线只有一个拐点,这个点就是光伏组件的最大功率点(MPP)。另外,如果STC中的环境温度由25C增大至50C时,同种光照强度下组件电流基本无变化,但组件电压会降低,从而说明环境温度直接影响光伏组件输出电压。

图4清楚说明了晶硅组件的温度特性:相对于25Co标准测试条件,温度每升高1Co,组件电流可增大0.067%,组件开路电压降低0.33%,组件最大功率降低0.43%。从而温度对组件电压影响较大,但对组件电流影响不大,基本可以忽略不计,因而温度每升高1Co,组件MPP电压降低0.43%。这里插个题外话,在组串中选择组件串联的个数时,需根据所选用的组件温度系数,仔细核算低温下组串电压不可超过逆变器的最大输入电压。

图4 晶硅组件的温度特性

2、组件和组串的内部串联结构

经常听到晶硅组件60片、72片的说法,这个实际讲的是组件内部电池片串联的个数,每个电池片是一个独立的光伏电池单元。如图5所示,每20片或24片光伏电池对应一个子串,光伏组件由3个子串串联而成,每个子串两端反并联一个旁路二极管,旁路二极管可减轻热斑效应。这3个子串的输出线及旁路二极管在组件接线盒中用于电气连接,再通过接线盒引出总的正负两根出线,也就是光伏组件日常附带的直流接头和电缆。

图4 晶硅组件内部的3个子串及其旁路二极管

以上说明了晶硅组件内部由3个子串串联而成,其实当前光伏发电系统的光伏组串也是由多个组件串联而成,如图5所示。不管是集中式逆变器的直流汇流箱、还是组串式逆变器的直流输入端,都会接入光伏组串,组串一般由20~24个组件串联而成。所以,当前所有光伏发电本质上都是把多个电池片串联使用,以生成光伏组串的直流高压,便于逆变器实现并网交流发电。由初中物理知识可知,电路中不允许多个电流源串联,否则总电流由最小电流的电流源决定。另外在这里偷偷说一句,几个组串并联也存在能量损失,由于线路阻抗的存在,并联电压源的总电压由最低电压的电压源决定。

图5 多个组件串联的组串式或集中式光伏发电系统

3、光伏组件的木桶效应

参考度娘百科,盛水的木桶是由多块木板箍成的,盛水量也是由这些木板共同决定的。若其中一块木板很短,则此木桶的盛水量就被限制,该短板就成了这个木桶盛水量的“限制因素”(或称“短板效应”)。若要使此木桶盛水量增加,只有换掉短板或将其加长才行。

一个水桶无论有多高,盛水量取决于其中最短的那块木板,人们把这一规律总结为“木桶原理”或“木桶效应”,又称“短板理论”。其核心内容为:一只水桶盛水的多少,并不取决于桶壁上最长的那块木块,而恰恰取决于桶壁上最短的那块。根据这一核心内容,“木桶效应”还有两个推论:其一,只有桶壁上的所有木板都足够高,那水桶才能盛满水。其二,只要这个水桶里有一块不够高度,水桶里的水就不可能是满的。

为了让水桶尽量多装水,必须要找出薄弱环节(短板),并且改进该环节把这个短木板加长。命苦不能怨政府,幸福的家庭是相似的,而不幸的家庭各有各的不幸。很不幸光伏组件串联或内部串联子串都存在木桶效应,甚至可以说木桶效应已充满光伏发电系统中。

由于组件内部串联子串或组串中多个组件串联的本质特性相似,以下以组串为例说明。如图7所示,由3个光伏组件串联构成一个组串,每个组件电流相同时,构成组串的总电流也相同,实际上组串总电流等于每个组件电流。这种工作状况下,每个组件的MPP完全一致,当然这是一种非常理想而实际中并不存在的情形。


图7 组件MPP一致情况下的组串电气特性

理想很丰满,现实太骨感。实际上,组串中每个组件MPP不可能完全一致,如图8所示的第3个组件(PV3)由于种种原因MPP发生变化,而第1、2个组件(PV1、2)仍然可实现MPP。这种情况下如果这3个组件仍然串联构成一个组串时,组串的总电流不可能达到理想数值,也不可能继续最大功率输出。组串最大输出功率受逆变器的MPPT算法限制,既可能工作于受电流源串联物理原的影响而电流限制在PV3的小MPP电流,也可能工作于PV1、2近似最大功率点而PV3旁路二极管导通的状态(即图8所示)。

图8 组件MPP不一致情况下的组串电气特性

4、木桶效应导致组件失配

上一节提到,当组串中组件PV3的MPP变小时,组串最大输出功率受逆变器的MPPT算法限制,既可能工作于受电流源串联物理原的影响而电流限制在PV3的MPP,此时的直观状态是组串电压高而功率小;也可能工作于PV1、2近似最大功率点而PV3旁路二极管导通的状态,此时的直观状态是组串电压低而功率大。

声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存